Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Neurorehabil Neural Repair ; 38(5): 373-385, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38572686

RESUMEN

BACKGROUND: Knowing how impaired manual dexterity and finger proprioception affect upper limb activity capacity is important for delineating targeted post-stroke interventions for upper limb recovery. OBJECTIVES: To investigate whether impaired manual dexterity and finger proprioception explain variance in post-stroke activity capacity, and whether they explain more variance than conventional clinical assessments of upper limb sensorimotor impairments. METHODS: Activity capacity and hand sensorimotor impairments were assessed using clinical measures in N = 42 late subacute/chronic hemiparetic stroke patients. Dexterity was evaluated using the Dextrain Manipulandum to quantify accuracy of visuomotor finger force-tracking (N = 36), timing of rhythmic tapping (N = 36), and finger individuation (N = 24), as well as proprioception (N = 27). Stepwise multivariate and hierarchical linear regression models were used to identify impairments best explaining activity capacity. RESULTS: Dexterity and proprioceptive components significantly increased the variance explained in activity capacity: (i) Box and Block Test was best explained by baseline tonic force during force-tracking and tapping frequency (adjusted R2 = .51); (ii) Motor Activity Log was best explained by success rate in finger individuation (adjusted R2 = .46); (iii) Action Research Arm Test was best explained by release of finger force and proprioceptive measures (improved reaction time related to use of proprioception; adjusted R2 = .52); and (iv) Moberg Pick-Up test was best explained by proprioceptive function (adjusted R2 = .18). Models excluding dexterity and proprioception variables explained up to 19% less variance. CONCLUSIONS: Manual dexterity and finger proprioception explain unique variance in activity capacity not captured by conventional impairment measures and should be assessed when considering the underlying causes of post-stroke activity capacity limitations.URL: https://www.clinicaltrials.gov. Unique identifier: NCT03934073.


Asunto(s)
Dedos , Propiocepción , Accidente Cerebrovascular , Extremidad Superior , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dedos/fisiopatología , Dedos/fisiología , Actividad Motora/fisiología , Destreza Motora/fisiología , Paresia/fisiopatología , Paresia/etiología , Propiocepción/fisiología , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/complicaciones , Extremidad Superior/fisiopatología
2.
Front Psychiatry ; 14: 1200864, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435404

RESUMEN

Background: We performed a pilot study on whether tablet-based measures of manual dexterity can provide behavioral markers for detection of first-episode psychosis (FEP), and whether cortical excitability/inhibition was altered in FEP. Methods: Behavioral and neurophysiological testing was undertaken in persons diagnosed with FEP (N = 20), schizophrenia (SCZ, N = 20), autism spectrum disorder (ASD, N = 20), and in healthy control subjects (N = 20). Five tablet tasks assessed different motor and cognitive functions: Finger Recognition for effector (finger) selection and mental rotation, Rhythm Tapping for temporal control, Sequence Tapping for control/memorization of motor sequences, Multi Finger Tapping for finger individuation, and Line Tracking for visuomotor control. Discrimination of FEP (from other groups) based on tablet-based measures was compared to discrimination through clinical neurological soft signs (NSS). Cortical excitability/inhibition, and cerebellar brain inhibition were assessed with transcranial magnetic stimulation. Results: Compared to controls, FEP patients showed slower reaction times and higher errors in Finger Recognition, and more variability in Rhythm Tapping. Variability in Rhythm Tapping showed highest specificity for the identification of FEP patients compared to all other groups (FEP vs. ASD/SCZ/Controls; 75% sensitivity, 90% specificity, AUC = 0.83) compared to clinical NSS (95% sensitivity, 22% specificity, AUC = 0.49). Random Forest analysis confirmed FEP discrimination vs. other groups based on dexterity variables (100% sensitivity, 85% specificity, balanced accuracy = 92%). The FEP group had reduced short-latency intra-cortical inhibition (but similar excitability) compared to controls, SCZ, and ASD. Cerebellar inhibition showed a non-significant tendency to be weaker in FEP. Conclusion: FEP patients show a distinctive pattern of dexterity impairments and weaker cortical inhibition. Easy-to-use tablet-based measures of manual dexterity capture neurological deficits in FEP and are promising markers for detection of FEP in clinical practice.

3.
J Neuroeng Rehabil ; 20(1): 93, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464404

RESUMEN

OBJECTIVE: To compare the efficacy of Dextrain Manipulandum™ training of dexterity components such as force control and independent finger movements, to dose-matched conventional therapy (CT) post-stroke. METHODS: A prospective, single-blind, pilot randomized clinical trial was conducted. Chronic-phase post-stroke patients with mild-to-moderate dexterity impairment (Box and Block Test (BBT) > 1) received 12 sessions of Dextrain or CT. Blinded measures were obtained before and after training and at 3-months follow-up. Primary outcome was BBT-change (after-before training). Secondary outcomes included changes in motor impairments, activity limitations and dexterity components. Corticospinal excitability and short intracortical inhibition (SICI) were measured using transcranial magnetic stimulation. RESULTS: BBT-change after training did not differ between the Dextrain (N = 21) vs CT group (N = 21) (median [IQR] = 5[2-7] vs 4[2-7], respectively; P = 0.36). Gains in BBT were maintained at the 3-month post-training follow-up, with a non-significant trend for enhanced BBT-change in the Dextrain group (median [IQR] = 3[- 1-7.0], P = 0.06). Several secondary outcomes showed significantly larger changes in the Dextrain group: finger tracking precision (mean ± SD = 0.3 ± 0.3N vs - 0.1 ± 0.33N; P < 0.0018), independent finger movements (34.7 ± 25.1 ms vs 7.7 ± 18.5 ms, P = 0.02) and maximal finger tapping speed (8.4 ± 7.1 vs 4.5 ± 4.9, P = 0.045). At follow-up, Dextrain group showed significantly greater improvement in Motor Activity Log (median/IQR = 0.7/0.2-0.8 vs 0.2/0.1-0.6, P = 0.05). Across both groups SICI increased in patients with greater BBT-change (Rho = 0.80, P = 0.006). Comparing Dextrain subgroups with maximal grip force higher/lower than median (61.2%), BBT-change was significantly larger in patients with low vs high grip force (7.5 ± 5.6 vs 2.9 ± 2.8; respectively, P = 0.015). CONCLUSIONS: Although immediate improvements in gross dexterity post-stroke did not significantly differ between Dextrain training and CT, our findings suggest that Dextrain enhances recovery of several dexterity components and reported hand-use, particularly when motor impairment is moderate (low initial grip force). Findings need to be confirmed in a larger trial. Trial registration ClinicalTrials.gov NCT03934073 (retrospectively registered).


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Método Simple Ciego , Estudios Prospectivos , Recuperación de la Función , Resultado del Tratamiento , Accidente Cerebrovascular/complicaciones , Extremidad Superior
4.
Brain Commun ; 4(5): fcac241, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36262369

RESUMEN

Recovery of dexterous hand use is critical for functional outcome after stroke. Grip force recordings can inform on maximal motor output and modulatory and inhibitory cerebral functions, but how these actually contribute to recovery of dexterous hand use is unclear. This cohort study used serially assessed measures of hand kinetics to test the hypothesis that behavioural measures of motor modulation and inhibition explain dexterity recovery beyond that explained by measures of motor output alone. We also investigated the structural and functional connectivity correlates of grip force control recovery. Eighty-nine adults (median age = 54 years, 26% females) with first-ever ischaemic or haemorrhagic stroke and persistent arm and hand paresis were assessed longitudinally, at 3 weeks, and at 3 and 6 months after stroke. Kinetic measures included: maximal grip force, accuracy of precision and power grip force control, and ability to release force abruptly. Dexterous hand use was assessed clinically with the Box and Block Test and motor impairment with the upper extremity Fugl-Meyer Assessment. Structural and functional MRI was used to assess weighted corticospinal tract lesion load, voxel-based lesion symptom mapping and interhemispheric resting-state functional connectivity. Fifty-three per cent of patients had severe initial motor impairment and a majority still had residual force control impairments at 6 months. Force release at 3 weeks explained 11% additional variance of Box and Block Test outcome at 6 months, above that explained by initial scores (67%). Other kinetic measures did not explain additional variance of recovery. The predictive value of force release remained significant when controlling for corticospinal tract lesion load and clinical measures. Corticospinal tract lesion load correlated with recovery in grip force control measures. Lesions involving the parietal operculum, insular cortex, putamen and fronto-striatal tracts were also related to poorer force modulation and release. Lesions to fronto-striatal tracts explained an additional 5% of variance in force release beyond the 43% explained by corticospinal injury alone. Interhemispheric functional connectivity did not relate to force control recovery. We conclude that not only voluntary force generation but also force release (reflecting motor inhibition) are important for recovery of dexterous hand use after stroke. Although corticospinal injury is a main determinant of recovery, lesions to integrative somatosensory areas and fronto-parietal white matter (involved in motor inhibition) explain additional variance in post-stroke force release recovery. Our findings indicate that post-stroke upper limb motor impairment profiling, which is essential for targeted treatment, should consider both voluntary grasp generation and inhibition.

5.
Neurophysiol Clin ; 52(5): 354-365, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35945093

RESUMEN

OBJECTIVES: The role of the cerebellum in motor learning of dexterous control and interaction with aging remains incompletely understood. We compared the effect of age and cerebellar transcranial direct current stimulation (CRB-tDCS) on motor learning in two different manual dexterity tasks, visuomotor force control vs. effector selection (independent finger movements). METHODS: Twenty younger and 20 older adults were randomized (double-blinded) to anodal or sham CRB-tDCS during dexterity training over three consecutive days, and followed-up at day 10. Motor learning was measured as (i) overall learning (across 10 days), (ii) within-day (short-term) learning, (iii) between-day learning (consolidation), and (iv) retention (long-term learning; day 3 to day 10). RESULTS: Younger and older subjects showed significant overall learning in both tasks. Subjects with poor initial performance showed stronger learning. No effects of CRB-tDCS were observed in younger adults. A significant Age*CRB-tDCS interaction showed that CRB-tDCS improved within-day learning in finger independence (improved reaction time in effector selection) in older adults. However, a significant Age*CRB-tDCS interaction showed that CRB-tDCS impacted consolidation negatively in older subjects. No stimulation effects were found on retention. Finally, we found that degree of within-day learning in finger independence (change in reaction times) correlated with baseline (pre-training) reaction times in both young and old subjects. DISCUSSION: The results suggest that CRB-tDCS may improve short-term learning of manual dexterity in older adults in a task-dependent manner, specifically in difficult tasks requiring effector (action) selection. However, cerebellar tDCS stimulation may also interfere with consolidation in older subjects. These results need confirmation in a larger sample.


Asunto(s)
Estimulación Transcraneal de Corriente Directa , Humanos , Anciano , Estimulación Transcraneal de Corriente Directa/métodos , Cerebelo/fisiología , Aprendizaje/fisiología , Dedos , Movimiento
6.
J Neuroeng Rehabil ; 19(1): 35, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35331273

RESUMEN

BACKGROUND: We developed five tablet-based tasks (applications) to measure multiple components of manual dexterity. AIM: to test reliability and validity of tablet-based dexterity measures in healthy participants. METHODS: Tasks included: (1) Finger recognition to assess mental rotation capacity. The subject taps with the finger indicated on a virtual hand in three orientations (reaction time, correct trials). (2) Rhythm tapping to evaluate timing of finger movements performed with, and subsequently without, an auditory cue (inter-stimulus interval). (3) Multi-finger tapping to assess independent finger movements (reaction time, correct trials, unwanted finger movements). (4) Sequence tapping to assess production and memorization of visually cued finger sequences (successful taps). (5) Line-tracking to assess movement speed and accuracy while tracking an unpredictably moving line on the screen with the fingertip (duration, error). To study inter-rater reliability, 34 healthy subjects (mean age 35 years) performed the tablet tasks twice with two raters. Relative reliability (Intra-class correlation, ICC) and absolute reliability (Standard error of measurement, SEM) were established. Task validity was evaluated in 54 healthy subjects (mean age 49 years, range: 20-78 years) by correlating tablet measures with age, clinical dexterity assessments (time taken to pick-up objects in Box and Block Test, BBT and Moberg Pick Up Test, MPUT) and with measures obtained using a finger force-sensor device. RESULTS: Most timing measures showed excellent reliability. Poor to excellent reliability was found for correct trials across tasks, and reliability was poor for unwanted movements. Inter-session learning occurred in some measures. Age correlated with slower and more variable reaction times in finger recognition, less correct trials in multi-finger tapping, and slower line-tracking. Reaction times correlated with those obtained using a finger force-sensor device. No significant correlations between tablet measures and BBT or MPUT were found. Inter-task correlation among tablet-derived measures was weak. CONCLUSIONS: Most tablet-based dexterity measures showed good-to-excellent reliability (ICC ≥ 0.60) except for unwanted movements during multi-finger tapping. Age-related decline in performance and association with finger force-sensor measures support validity of tablet measures. Tablet-based components of dexterity complement conventional clinical dexterity assessments. Future work is required to establish measurement properties in patients with neurological and psychiatric disorders.


Asunto(s)
Accidente Cerebrovascular , Adulto , Mano , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Reproducibilidad de los Resultados , Extremidad Superior
7.
Cortex ; 146: 173-185, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34883309

RESUMEN

Perception and action are based on cerebral spatial representations of the body and the external world. However, spatial representations differ from the physical characteristics of body and external space (e.g., objects). It remains unclear whether these discrepancies are related to functional requirements of action and are shared between different spatial representations, indicating common brain processes. We hypothesized that distortions of spatial hand representation would be affected by age, sensorimotor practice and external space representation. We assessed hand representations using tactile and verbal localization tasks and quantified object representation in three age groups (20-79 yrs, total n = 60). Our results show significant shrinking of spatial hand representations (hand width) with age, unrelated to sensorimotor functions. No such shrinking occurred in spatial object representations despite some common characteristics with hand representations. Therefore, spatial properties of body representation partially share characteristics of object representation but also evolve independently across the lifespan.


Asunto(s)
Longevidad , Percepción del Tacto , Adulto , Anciano , Imagen Corporal , Mano , Humanos , Persona de Mediana Edad , Percepción Espacial , Tacto , Adulto Joven
8.
Front Neurosci ; 15: 646698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33897359

RESUMEN

For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.

9.
Brain Stimul ; 13(5): 1298-1304, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32585356

RESUMEN

BACKGROUND: Neural information processing is subject to noise and this leads to variability in neural firing and behavior. Schizophrenia has been associated with both more variable motor control and impaired cortical inhibition, which is crucial for excitatory/inhibitory balance in neural commands. HYPOTHESIS: In this study, we hypothesized that impaired intracortical inhibition in motor cortex would contribute to task-related motor noise in schizophrenia. METHODS: We measured variability of force and of electromyographic (EMG) activity in upper limb and hand muscles during a visuomotor grip force-tracking paradigm in patients with schizophrenia (N = 25), in unaffected siblings (N = 17) and in healthy control participants (N = 25). Task-dependent primary motor cortex (M1) excitability and inhibition were assessed using transcranial magnetic stimulation (TMS). RESULTS: During force maintenance patients with schizophrenia showed increased variability in force and EMG, despite similar mean force and EMG magnitudes. Compared to healthy controls, patients with schizophrenia also showed increased M1 excitability and reduced cortical inhibition during grip-force tracking. EMG variability and force variability correlated negatively to cortical inhibition in patients with schizophrenia. EMG variability also correlated positively to negative symptoms. Siblings had similar variability and cortical inhibition compared to controls. Increased EMG and force variability indicate enhanced motor noise in schizophrenia, which relates to reduced motor cortex inhibition. CONCLUSION: The findings suggest that excessive motor noise in schizophrenia may arise from an imbalance of M1 excitation/inhibition of GABAergic origin. Thus, higher motor noise may provide a useful marker of impaired cortical inhibition in schizophrenia.


Asunto(s)
Electromiografía/métodos , Fuerza de la Mano/fisiología , Inhibición Neural/fisiología , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Psicología del Esquizofrénico , Adulto , Potenciales Evocados Motores/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Corteza Motora/fisiología , Estimulación Luminosa/métodos , Estimulación Magnética Transcraneal/métodos , Adulto Joven
10.
Autism Res ; 13(6): 885-896, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32157824

RESUMEN

Autism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping clinical phenotypes including sensorimotor impairments. However, direct comparative studies on sensorimotor control across these two disorders are lacking. We set out to compare visuomotor upper limb impairment, quantitatively, in ASD and SCZ. Patients with ASD (N = 24) were compared to previously published data from healthy control participants (N = 24) and patients with SCZ (N = 24). All participants performed a visuomotor grip force-tracking task in single and dual-task conditions. The dual-task (high cognitive load) presented either visual distractors or required mental addition during grip force-tracking. Motor inhibition was measured by duration of force release and from principal component analysis (PCA) of the participant's force-trajectory. Common impairments in patients with ASD and SCZ included increased force-tracking error in single-task condition compared to controls, a further increase in error in dual-task conditions, and prolonged duration of force release. These three sensorimotor impairments were found in both patient groups. In contrast, distinct impairments in patients with ASD included greater error under high cognitive load and delayed onset of force release compared to SCZ. The PCA inhibition component was higher in ASD than SCZ and controls, correlated to duration of force release, and explained group differences in tracking error. In conclusion, sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD, consistent with enhanced neurodevelopmental load in ASD. Furthermore, impaired motor anticipation may represent a further specific impairment in ASD. Autism Res 2020, 13: 885-896. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Autism spectrum disorder (ASD) and schizophrenia (SCZ) are neurodevelopmental disorders with partly overlapping and partly distinct clinical symptoms. Sensorimotor impairments rank among these symptoms, but it is less clear whether they are shared or distinct. In this study, we showed using a grip force task that sensorimotor impairments related to motor inhibition are common to ASD and SCZ, but more severe in ASD. Impaired motor anticipation may represent a further specific impairment in ASD.


Asunto(s)
Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/fisiopatología , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/fisiopatología , Esquizofrenia/complicaciones , Esquizofrenia/fisiopatología , Adulto , Femenino , Humanos , Masculino , Fenotipo
11.
J Neurophysiol ; 122(1): 398-412, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31116630

RESUMEN

Several qualitative features distinguish bipedal from quadrupedal locomotion in mammals. In this study we show quantitative differences between quadrupedal and bipedal gait in the Japanese monkey in terms of gait patterns, trunk/hindlimb kinematics, and electromyographic (EMG) activity, obtained from 3 macaques during treadmill walking. We predicted that as a consequence of an almost upright body axis, bipedal gait would show properties consistent with temporal and spatial optimization countering higher trunk/hindlimb loads and a less stable center of mass (CoM). A comparatively larger step width, an ~9% longer duty cycle, and ~20% increased relative duration of the double-support phase were all in line with such a strategy. Bipedal joint kinematics showed the strongest differences in proximal, and least in distal, hindlimb joint excursions compared with quadrupedal gait. Hindlimb joint coordination (cyclograms) revealed more periods of single-joint rotations during bipedal gait and predominance of proximal joints during single support. The CoM described a symmetrical, quasi-sinusoidal left/right path during bipedal gait, with an alternating shift toward the weight-supporting limb during stance. Trunk/hindlimb EMG activity was nonuniformally increased during bipedal gait, most prominently in proximal antigravity muscles during stance (up to 10-fold). Non-antigravity hindlimb EMG showed altered temporal profiles during liftoff or touchdown. Muscle coactivation was more, but muscle synergies less, frequent during bipedal gait. Together, these results show that behavioral and EMG properties of bipedal vs. quadrupedal gait are quantitatively distinct and suggest that the neural control of bipedal primate locomotion underwent specific adaptations to generate these particular behavioral features to counteract increased load and instability. NEW & NOTEWORTHY Bipedal locomotion imposes particular biomechanical constraints on motor control. In a within-species comparative study, we investigated joint kinematics and electromyographic characteristics of bipedal vs. quadrupedal treadmill locomotion in Japanese macaques. Because these features represent (to a large extent) emergent properties of the underlying neural control, they provide a comparative, behavioral, and neurophysiological framework for understanding the neural system dedicated to bipedal locomotion in this nonhuman primate, which constitutes a critical animal model for human bipedalism.


Asunto(s)
Extremidades/fisiología , Marcha , Contracción Muscular , Equilibrio Postural , Animales , Fenómenos Biomecánicos , Extremidades/inervación , Femenino , Macaca fuscata , Masculino , Músculo Esquelético/inervación , Músculo Esquelético/fisiología
12.
Brain ; 142(7): 2149-2164, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31099820

RESUMEN

Impairments in attentional, working memory and sensorimotor processing have been consistently reported in schizophrenia. However, the interaction between cognitive and sensorimotor impairments and the underlying neural mechanisms remains largely uncharted. We hypothesized that altered attentional processing in patients with schizophrenia, probed through saccadic inhibition, would partly explain impaired sensorimotor control and would be reflected as altered task-dependent modulation of cortical excitability and inhibition. Twenty-five stabilized patients with schizophrenia, 17 unaffected siblings and 25 healthy control subjects were recruited. Subjects performed visuomotor grip force-tracking alone (single-task condition) and with increased cognitive load (dual-task condition). In the dual-task condition, two types of trials were randomly presented: trials with visual distractors (requiring inhibition of saccades) or trials with addition of numbers (requiring saccades and addition). Both dual-task trial types required divided visual attention to the force-tracking target and to the distractor or number. Gaze was measured during force-tracking tasks, and task-dependent modulation of cortical excitability and inhibition were assessed using transcranial magnetic stimulation. In the single-task, patients with schizophrenia showed increased force-tracking error. In dual-task distraction trials, force-tracking error increased further in patients, but not in the other two groups. Patients inhibited fewer saccades to distractors, and the capacity to inhibit saccades explained group differences in force-tracking performance. Cortical excitability at rest was not different between groups and increased for all groups during single-task force-tracking, although, to a greater extent in patients (80%) compared to controls (40%). Compared to single-task force-tracking, the dual-task increased cortical excitability in control subjects, whereas patients showed decreased excitability. Again, the group differences in cortical excitability were no longer significant when failure to inhibit saccades was included as a covariate. Cortical inhibition was reduced in patients in all conditions, and only healthy controls increased inhibition in the dual-task. Siblings had similar force-tracking and gaze performance as controls but showed altered task-related modulation of cortical excitability and inhibition in dual-task conditions. In patients, neuropsychological scores of attention correlated with visuomotor performance and with task-dependant modulation of cortical excitability. Disorganization symptoms were greatest in patients with weakest task-dependent modulation of cortical excitability. This study provides insights into neurobiological mechanisms of impaired sensorimotor control in schizophrenia showing that deficient divided visual attention contributes to impaired visuomotor performance and is reflected in impaired modulation of cortical excitability and inhibition. In siblings, altered modulation of cortical excitability and inhibition is consistent with a genetic risk for cortical abnormality.


Asunto(s)
Atención/fisiología , Excitabilidad Cortical/fisiología , Inhibición Neural/fisiología , Desempeño Psicomotor/fisiología , Esquizofrenia/fisiopatología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Movimientos Sacádicos/fisiología , Estimulación Magnética Transcraneal , Adulto Joven
13.
Neurophysiol Clin ; 49(2): 149-164, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30391148

RESUMEN

OBJECTIVES: In this longitudinal pilot study, we investigated how manual dexterity recovery was related to corticospinal tract (CST) injury and excitability, in six patients undergoing conventional rehabilitation. METHODS: Key components of manual dexterity, namely finger force control, finger tapping rate and independence of finger movements, were quantified. Structural MRI was obtained to calculate CST lesion load. CST excitability was assessed by measuring rest motor threshold (RMT) and the amplitude of motor evoked potentials (MEPs) using transcranial magnetic stimulation (TMS). Measurements were obtained at two weeks, three and six months post-stroke. RESULTS: At six months post-stroke, complete recovery of hand gross motor impairment (i.e., maximal Fugl-Meyer score for hand) had occurred in three patients and four patients had recovered ability to accurately control finger force. However, tapping rate and independence of finger movements remained impaired in all six patients at six months. Recovery in hand gross motor impairment and finger force control occurred in patients with smaller CST lesion load and almost complete recovery of CST excitability, although RMT or MEP size remained slightly altered in the stroke-affected hemisphere compared to the unaffected hemisphere. The two patients with poorest recovery showed persistent absence of MEPs and greatest structural injury to CST. DISCUSSION: The findings support good motor recovery being overall correlated with smaller CST lesion, and with almost complete recovery of CST excitability. However, impairment of manual dexterity persisted despite recovery in gross hand movements and grasping abilities, suggesting involvement of additional brain structures for fine manual tasks.


Asunto(s)
Destreza Motora , Tractos Piramidales/patología , Tractos Piramidales/fisiopatología , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/fisiopatología , Anciano , Potenciales Evocados Motores , Femenino , Dedos , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Proyectos Piloto , Estudios Prospectivos , Tractos Piramidales/lesiones , Estimulación Magnética Transcraneal , Resultado del Tratamiento
14.
Schizophr Bull ; 45(6): 1358-1366, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-30561714

RESUMEN

The ability to infer from uncertain information is impaired in schizophrenia and is associated with hallucinations and false beliefs. The accumulation of information is a key process for generating a predictive internal model, which statistically estimates an outcome from a specific situation. This study examines if updating the predictive model by the accumulation of information in absence of feedback is impaired in schizophrenia. We explored the implicit adaptation to the probability of being instructed to perform a movement (33%-Go, 50%-Go, or 66%-Go) in a Go/NoGo task in terms of reaction times (RTs), electromyographic activity, and corticospinal excitability (CSE) of primary motor cortex (M1). CSE was assessed at two time points to evaluate prediction of the upcoming instruction based on previously accumulated information: at rest (preceding the warning signal) and at the Go/NoGo signal onset. Three groups were compared: patients with schizophrenia (n = 20), unaffected siblings (n = 16), and healthy controls (n = 20). Controls and siblings showed earlier movement onset and increased CSE with higher Go probability. CSE adaptation seemed long-lasting, because the two CSE measures, at least 1500 ms apart, strongly correlated. Patients with schizophrenia failed to show movement onset (RT) adaptation and modulation of CSE. In contrast, all groups decreased movement duration with increasing Go probability. Modulation of CSE in the anticipatory phase of the potential movement reflected the estimation of upcoming response probability in unaffected controls and siblings. Impaired modulation of CSE supports the hypothesis that implicit adaptation to probabilistic context is altered in schizophrenia.


Asunto(s)
Excitabilidad Cortical , Corteza Motora/fisiopatología , Movimiento , Desempeño Psicomotor , Tractos Piramidales/fisiopatología , Esquizofrenia/fisiopatología , Hermanos , Estimulación Magnética Transcraneal , Adulto , Estudios de Casos y Controles , Electromiografía , Fenómenos Electrofisiológicos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Probabilidad , Tiempo de Reacción , Adulto Joven
15.
Front Neurol ; 9: 910, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420830

RESUMEN

Manual dexterity measures can be useful for early detection of age-related functional decline and for prediction of cognitive decline. However, what aspects of sensorimotor function to assess remains unclear. Manual dexterity markers should be able to separate impairments related to cognitive decline from those related to healthy aging. In this pilot study, we aimed to compare manual dexterity components in patients diagnosed with cognitive decline (mean age: 84 years, N = 11) and in age comparable cognitively intact elderly subjects (mean age: 78 years, N = 11). In order to separate impairments due to healthy aging from deficits due to cognitive decline we also included two groups of healthy young adults (mean age: 26 years, N = 10) and middle-aged adults (mean age: 41 years, N = 8). A comprehensive quantitative evaluation of manual dexterity was performed using three tasks: (i) visuomotor force tracking, (ii) isochronous single finger tapping with auditory cues, and (iii) visuomotor multi-finger tapping. Results showed a highly significant increase in force tracking error with increasing age. Subjects with cognitive decline had increased finger tapping variability and reduced ability to select the correct tapping fingers in the multi-finger tapping task compared to cognitively intact elderly subjects. Cognitively intact elderly subjects and those with cognitive decline had prolonged force release and reduced independence of finger movements compared to young adults and middle-aged adults. The findings suggest two different patterns of impaired manual dexterity: one related to cognitive decline and another related to healthy aging. Manual dexterity tasks requiring updating of performance, in accordance with (temporal or spatial) task rules maintained in short-term memory, are particularly affected in cognitive decline. Conversely, tasks requiring online matching of motor output to sensory cues were affected by age, not by cognitive status. Remarkably, no motor impairments were detected in patients with cognitive decline using clinical scales of hand function. The findings may have consequences for the development of manual dexterity markers of cognitive decline.

16.
Front Hum Neurosci ; 11: 511, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123475

RESUMEN

Structural and functional differences are known to exist within the cortical sensorimotor networks with respect to the dominant vs. non-dominant hand. Similarly, the cerebellum, a key structure in the sensorimotor network with its cerebello-cortical connections, has been reported to respond differently when using the dominant vs. non-dominant hand. Several groups have already investigated causal interactions during diverse motor paradigms using effective connectivity but few have studied the larger visuomotor network, including key structures such as the parietal cortex and the cerebellum, with both hands. Moreover, the effect of force level on such interactions is still unclear. We therefore sought to determine the hemispheric asymmetries in the cerebello-cortical sensorimotor network in right-handers at two force levels (5% and 10% maximum voluntary contraction) for both hands. Cerebello-cortical modulations were investigated in 28 healthy, right-handed volunteers by determining the effective connectivity during a visuomotor task at two force levels under fMRI. A network was built consisting of the left and right primary motor (M1), ventral premotor (PMv) and posterior parietal cortices (PPC), in addition to the supplementary motor area (SMA), and the ipsilateral cerebellum (Cer) to the hand performing the motor task. Task performance (precision of isometric grip force tracking) did not differ between hands, nor did task-related activations in the sensorimotor areas apart from the contralateral primary motor cortex. However, during visuomotor control of the non-dominant hand, connectivity analysis revealed causal modulations between (i) the ipsilateral cerebellum and SMA, and (ii) the ipsilatearl cerebellum and contralateral PPC, which was not the case when using the dominant hand. These cerebello-cortical modulations for the non-dominant hand were more present at the higher of the two force levels. We conclude that precision force generation executed with the non-dominant hand, compared to the dominant hand, may require enhanced cerebello-cortical interaction to ensure equivalent left-right task performance.

17.
Front Psychiatry ; 8: 120, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28740470

RESUMEN

Impaired manual dexterity is commonly observed in schizophrenia. However, a quantitative description of key sensorimotor components contributing to impaired dexterity is lacking. Whether the key components of dexterity are differentially affected and how they relate to clinical characteristics also remains unclear. We quantified the degree of dexterity in 35 stabilized patients with schizophrenia and in 20 age-matched control subjects using four visuomotor tasks: (i) force tracking to quantify visuomotor precision, (ii) sequential finger tapping to measure motor sequence recall, (iii) single-finger tapping to assess temporal regularity, and (iv) multi-finger tapping to measure independence of finger movements. Diverse clinical and neuropsychological tests were also applied. A patient subgroup (N = 15) participated in a 14-week cognitive remediation protocol and was assessed before and after remediation. Compared to control subjects, patients with schizophrenia showed greater error in force tracking, poorer recall of tapping sequences, decreased tapping regularity, and reduced degree of finger individuation. A composite performance measure discriminated patients from controls with sensitivity = 0.79 and specificity = 0.9. Aside from force-tracking error, no other dexterity components correlated with antipsychotic medication. In patients, some dexterity components correlated with neurological soft signs, Positive and Negative Syndrome Scale (PANSS), or neuropsychological scores. This suggests differential cognitive contributions to these components. Cognitive remediation lead to significant improvement in PANSS, tracking error, and sequence recall (without change in medication). These findings show that multiple aspects of sensorimotor control contribute to impaired manual dexterity in schizophrenia. Only visuomotor precision was related to antipsychotic medication. Good diagnostic accuracy and responsiveness to treatment suggest that manual dexterity may represent a useful clinical marker in schizophrenia.

18.
PLoS One ; 12(2): e0172019, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28192488

RESUMEN

BACKGROUND: Focal dystonia has been associated with deficient processing of sense of effort cues. However, corresponding studies are lacking in cervical dystonia (CD). We hypothesized that dystonic muscle activity would perturb neck force control based on sense of effort cues. METHODS: Neck extension force control was investigated in 18 CD patients with different clinical features (7 with and 11 without retrocollis) and in 19 control subjects. Subjects performed force-matching and force-maintaining tasks at 5% and 20% of maximum voluntary contraction (MVC). Three task conditions were tested: i) with visual force feedback, ii) without visual feedback (requiring use of sense of effort), iii) without visual feedback, but with neck extensor muscle vibration (modifying muscle afferent cues). Trapezius muscle activity was recorded using electromyography (EMG). RESULTS: CD patients did not differ in task performance from healthy subjects when using visual feedback (ANOVA, p>0.7). In contrast, when relying on sense of effort cues (without visual feedback, 5% MVC), force control was impaired in patients without retrocollis (p = 0.006), but not in patients with retrocollis (p>0.2). Compared to controls, muscle vibration without visual feedback significantly affected performance in patients with retrocollis (p<0.001), but not in patients without retrocollis. Extensor EMG during rest, included as covariate in ANOVA, explained these group differences. CONCLUSION: This study shows that muscle afferent feedback biases sense of effort cues when controlling neck forces in patients with CD. The bias acts on peripheral or central sense of effort cues depending on whether the task involves dystonic muscles. This may explain why patients with retrocollis more accurately matched isometric neck extension forces. This highlights the need to consider clinical features (pattern of dystonic muscles) when evaluating sensorimotor integration in CD.


Asunto(s)
Distonía/fisiopatología , Contracción Muscular , Músculos del Cuello/fisiopatología , Tortícolis/fisiopatología , Adulto , Anciano , Análisis de Varianza , Electromiografía/métodos , Retroalimentación Sensorial/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiopatología , Vibración
19.
J Comput Neurosci ; 42(1): 53-70, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27677889

RESUMEN

Muscle spindle discharge during active movement is a function of mechanical and neural parameters. Muscle length changes (and their derivatives) represent its primary mechanical, fusimotor drive its neural component. However, neither the action nor the function of fusimotor and in particular of γ-drive, have been clearly established, since γ-motor activity during voluntary, non-locomotor movements remains largely unknown. Here, using a computational approach, we explored whether γ-drive emerges in an artificial neural network model of the corticospinal system linked to a biomechanical antagonist wrist simulator. The wrist simulator included length-sensitive and γ-drive-dependent type Ia and type II muscle spindle activity. Network activity and connectivity were derived by a gradient descent algorithm to generate reciprocal, known target α-motor unit activity during wrist flexion-extension (F/E) movements. Two tasks were simulated: an alternating F/E task and a slow F/E tracking task. Emergence of γ-motor activity in the alternating F/E network was a function of α-motor unit drive: if muscle afferent (together with supraspinal) input was required for driving α-motor units, then γ-drive emerged in the form of α-γ coactivation, as predicted by empirical studies. In the slow F/E tracking network, γ-drive emerged in the form of α-γ dissociation and provided critical, bidirectional muscle afferent activity to the cortical network, containing known bidirectional target units. The model thus demonstrates the complementary aspects of spindle output and hence γ-drive: i) muscle spindle activity as a driving force of α-motor unit activity, and ii) afferent activity providing continuous sensory information, both of which crucially depend on γ-drive.


Asunto(s)
Modelos Neurológicos , Neuronas Motoras , Movimiento , Redes Neurales de la Computación , Humanos , Actividad Motora , Husos Musculares
20.
Neuroradiology ; 58(9): 929-35, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27278377

RESUMEN

INTRODUCTION: The study aims to assess the influence of neck extension on water diffusivity within the cervical spinal cord. METHODS: IRB approved the study in 22 healthy volunteers. All subjects underwent anatomical MR and diffusion tensor imaging (DTI) at 1.5 T. The cervical cord was imaged in neutral (standard) position and extension. Segmental vertebral rotations were analyzed on sagittal T2-weighted images using the SpineView® software. Spinal cord diffusivity was measured in cross-sectional regions of interests at multiple levels (C1-C5). RESULTS: As a result of non-adapted coil geometry for spinal extension, 10 subjects had to be excluded. Image quality of the remaining 12 subjects was good without any deteriorating artifacts. Quantitative measurements of vertebral rotation angles and diffusion parameters showed good intra-rater reliability (ICC = 0.84-0.99). DTI during neck extension revealed significantly decreased fractional anisotropy (FA) and increased radial diffusivity (RD) at the C3 level and increased apparent diffusion coefficients (ADC) at the C3 and C4 levels (p < 0.01 Bonferroni corrected). The C3/C4 level corresponded to the maximal absolute change in segmental vertebral rotation between the two positions. The increase in RD correlated positively with the degree of global extension, i.e., the summed vertebral rotation angle between C1 and C5 (R = 0.77, p = 0.006). CONCLUSION: Our preliminary results suggest that DTI can quantify changes in water diffusivity during cervical spine extension. The maximal differences in segmental vertebral rotation corresponded to the levels with significant changes in diffusivity (C3/C4). Consequently, kinetic DTI measurements may open new perspectives in the assessment of neural tissue under biomechanical constraints.


Asunto(s)
Agua Corporal/química , Médula Cervical/química , Médula Cervical/diagnóstico por imagen , Vértebras Cervicales/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Interpretación de Imagen Asistida por Computador/métodos , Rango del Movimiento Articular/fisiología , Adulto , Vértebras Cervicales/química , Difusión , Femenino , Humanos , Cinética , Masculino , Persona de Mediana Edad , Proyectos Piloto , Valores de Referencia , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA